Upgrade 3d printer parts like the sprite extruder. Convert a Bowden drive extruder for a sprite extruder with direct drive motion more suitable for TPU.

TPU Upgrade Process

Rebuild, Direct Drive, Build Plate and Tech Upgrades

TPU Action – Upgrade Process

Completed Build

Max Neo Upgrades: The Upgrade Process, Part of the TPU Action Series

Now, let’s discuss the Creality Max Neo 3D Printer Upgrade – unboxing, teardown, install of upgrade parts. Our goal is to improve TPU scalability and production quality. As a side note, we received a refurbished Max Neo and will cover the PETG settings and troubleshooting process in our next article.

We have already discussed the reasons for upgrading the parts and quality benefits it brings. We have purchased the necessary parts for the updates to increase our success rates. Now, let’s move on to the physical upgrade.

Unbox Upgrades

Let’s get started, shall we? We have  got our boxes and can officially begin the TPU Upgrade process. All parts have been unboxed, including the new extruder with direct drive that features an easy-to-install quick connect with locks on the print head. Additionally, we have the rail cart for bolting the extruder to the rail and powering it with the axis motors. Next, we have the new silent motherboard, which is necessary for installing the Creality Sprite Extruder Pro kit. Secondly, we have the new bed plate ready to go. Once the process is complete, we will test the machine first without the upgrade and then with it to ensure everything is printing smoothly.

Unbox Parts, Printer Teardown and  Disassembly References
Motherboard v4.2.7

Motherboard v4.2.7

WiFi Box 2.0

WiFi Box 2.0

Sprite Extruder Pro Kit

Sprite Extruder Pro Kit

Sprite Assembly Pro Unboxing

Sprite Extruder Pro

Power Down

Power Down

Unplug

Unplug

Prep Screen & Unplug

Prep Screen & Unplug

Disconnect Motors

Disconnect Motors

Starting the TPU upgrade process? Let’s begin by removing all power cords. If you have a Wifi 2.0 Box or Sonic Pad, those should also be powered down and their cords removed. I prefer to start fresh with no cords. Now, we have our tech tools. I  will post a link to the shopping list following this post. If you have the original set of tools provided by Creality at purchase, those will work just fine.

Begin Teardown, Be Careful and Take Your Time

Let’s dismantle the printer by taking apart the extruder and the extruder rail cart. After removing a few bolts, we should have the printing area cleared. It’s worth noting that this particular printer has previously been upgraded making the direct drive easily accessible.  For more information on the original direct drive build you can refer to the Ender Teardown, Rebuild – 5 Part Series. In the series, you will see the filament being removed, power cables unclipped, e-touch and cable connections from the extruder to the board, bolts being removed, cart being taken out, and extruder being detached. The printing area should now be free of extruder parts and the rail cart

Look around the 3D printer frame, specifically the drivers, those should be unclipped as well. I also like to disconnect the screen here. There is a clip on the back: the ribbon connector can be unclipped and set aside. Now, gently lift and turn the machine clockwise, placing the machine on its right side or screen side (which has been removed for this exact reason).

The top screw does not need to be removed here; it is one of 4 or 5 screws that hold the motherboard to the base Start by unscrewing the right-hand side first (motherboard side), being careful to unplug the 0.10 A computer fan clip, and then move on to the left side (power side). Ribbons, cords, and wires of various shades and colors may have shifted around a bit, especially in this case, as the printer was previously upgraded. Therefore, electrical wires or shield tape may be wound tightly. Be gentle with the cover screws, as they will be used again in approximately 15 – 30 minutes.

Unbox and Preparation
Motherboard v4.2.7

Motherboard v4.2.7

WiFi Box 2.0

WiFi Box 2.0

Sprite Extruder Pro Kit

Sprite Extruder Pro Kit

Sprite Extruder Pro Unboxing

Sprite Extruder Pro

Power Down

Power Down

Unplug

Unplug

Prep Screen & Unplug

Prep Screen & Unplug

Disconnect Motors

Disconnect Motors

Take a look around, assume if you have tilted the machine clockwise on it’s side by roughly 90 degrees and removed the screws. On the left, we are examining power management, and on the right, control.

Equally important, a visual inspection will reveal hot glue on all or most of the motherboard connectors, depending on the condition of the machine.

If the machine is new or refurbished, hot glue is common, so don’t be alarmed!

This is to be expected for Creality machines. We will begin removing the glue using a spudger, hemostats and/or gloved hand. In this process, we start from right to left, starting with the screen connector (rainbow ribbon), the top connector marked GV IN G OUT, the mini two-wire connectors (grey and the black axis wires), the fan wires (yellow and blue), and the red, yellow and black harness. Ignore the power wires for now, we will be address those in the third step. Next, we will move to the top of the board to disconnect the X, Y, Z and E black wire harnesses. You’re almost there, you can do this!

Disassemble Extruder and Motherboard
Internal Fan

Internal Fan

Unscrew Power Cover

Unscrew Power Cover

Power Unit

Power Unit

Unscrew Housing

Unscrew Housing

Motherboard

Motherboard

Hot Glue Removal

Hot Glue Removal

Right-to-left

Start Right-to-left

Disconnect Cables

Disconnect Cables

Fans & Power

Fans & Power

Disconnect Power

Disconnect Power

All Connections

All Connections

Remove Board

Remove Board

Let’s move on to the green locks next. Using a flat head screwdriver, start from right to left to unscrew and remove the red and black wires. Voila! We are now 50% complete. The glue removal process usually takes the longest, making it challenging to navigate the board space. Let’s unscrew the board from the frame (unscrew the two bolts on the front), leaving the last screw on the top, removing the top from the frame. Unscrew the motherboard and set it aside for safekeeping or for use in another refurbished printer in the future. Take a moment to check around the frame, organize the screws and bolts (I recommend using a piece of paper and a Sharpie). Draw a box label it,  and tape the hardware screws securely. 

Motherboard and Extruder Installation

Straightaway, let’s start by removing the new motherboard from its package, if you have not already done so, and placing it into the motherboard (control) space. Additionally,  make sure to safely connect the USB and MicroSD connectors on the board first, then align the board with the appropriate screw mounts on the board. Once the screws are in place, the board should sit firmly in place, secured and ready to go!

Reassemble 3D Printer, Upgrade Reference
Attach New Board

Attach New Board

Left-to-right

Left-to-right

+ and -

+ and –

Fans and Motors

Fans and Motors

Upper Cables

Upper Cables

Seat Cables

Seat Cables

Okay, in reverse, the TPU Upgrade process continues with the new Sprite Extruder raw wire ends. Start by securing the green motherboard locks first, moving from left to right. The power from the power unit should be on the side of the board, with alternative red/back wires. Make sure to read the labels to ensure the correct landing spot for those power wires. Next, connect the yellow/blue fan and the red, yellow, and black wires just below the fan connector. Moving right replace the x-, y- , z-, TB, TH, and GV IN G OUT connections. Now, connect the screen ribbon. Double-check all fittings and  secure the green locks on the board to ensure a snug fit.

Finally, when working on the motherboard, let’s replace the screws on the power unit side carefully. Run the wires through the notched metal railing and secure the front bolts for the control cover, bottom screws, and the top screws. This is a critical area where you must exercise caution, as the cables can easily break. Take your time here.

Post Installation Checks, Screws, Belts and More

Continuing on, secure the Pro Extruder Kit. Lift, turn, and place the printer  in its center. All wires, ribbons and connectors are ready for the new drive. Next, install the extruder and fit it to the assembly cart. Thirdly, connect the e-touch ribbon cable, seat the cable so that is snug. Fourthly, seat the red hot wire creating a connection between the hot end and the extruder. It may have a tight fit, so now is the time to place the wire while the extruder is loose on the cart. Secure the extruder to the cart mounting point by placing the screws and tightening them down. Moreover, ensure a secure and tight connection, firmly setting the drive in place!

Next, if you machine has an E-touch, screw it to the provided mounting hardware. Ensure a good fit by checking the orientation and making sure the extruder card fits snug on the rail. Securely attach the axis cables or rubber power drive belts. The belts slides into place on the backside of the assembly cart). This should be loose from the  if dismantling process. Firmly, attach axis cables, or rubber power drive belts. Undoubtedly, the belts slide into place (two slots cut out on the assembly cart) on the backside, if you remember during the teardown process. Next, loosen the X/Y axis drive belts using the red knobs, one on the front and the other on the right side. Now, tighten those knobs by turning them clockwise to apply tension to the belts and cart.

Extruder, Power On and Level
Seat Extruder

Seat Extruder

Power On

Power On

Hone & Level

Hone & Level

Replace drive connectors, which are key for stable linear and vertical movement. Reference tags will indicate connectors for controlling the x and y drive motors. Install the extruder ribbon by tucking it behind the two black plastic static tabs located just above the connector saddle and ribbon locks. 

Now the real test begins… the TPU Upgrade process continues to the next round! The series progresses, read more about TPU Post Processing or go back to the beginning with TPU Action. Finally, we will cover the initial settings, slicer, accessories and final settings in the next installment, so stick around. If you’re new to the series you can revisit upgrade parts on our affiliate shopping area and review pricing, upgraded hardware reviews, accessories and filament essential for this build. Alternatively, you can skip ahead, review article upgrade parts and accessories in the series opening.

TPU Upgrade Action

Full Install, System Inspection and Testing

TPU(Thermoplastic Polyurethane) Action – Sprite Extruder, Motherboard and Prints In Flight

TinkerCad Design - TPU Box with compartments

Max Neo Upgrades: The Parts, the pain and TPU Series

Covering TPU Action, starting with the removal, adding modifications, clean-up effort, settings for successful prints and final production.

Why Upgrade, Pieces and Parts

Let’s start with the why. Why upgrade your Max Neo board, extruder etc.? The easy answer is successful TPU prints. Prints of high quality, with low errors (blips and globs), working usable prints and again, TPU. How long did the upgrades take, i.e. duration, to upgrade the required parts for successful prints? In short, the installation took 30 – 60 minutes, with tweaks taking an additional 2 weeks. The time to achieve successful and consistent prints was 2.5 weeks. This includes time for troubleshooting, adding/removing parts, multiple test prints (which might slightly affect the duration), and finalizing print settings within the Creality Slicer.

Slicer and Pre-Print Preview
TinkerCad Design

Tinkercad Design

Slicer 4.3.8

Creality Slicer 4.3.8

Slicer Pre-Build

Slicer Pre-Build

If you have not checked out TINKERCAD yet, please do. This is where my drawings, ideas and digital designs come to life. It’s a web based application, specifically CAD (Computer Aided Design) software, used in the maker space and ideally in the global manufacturing industry. Tinkercad allows tinkers, students, and teachers to quickly learn, build and create in a simplified AutoCad environment. Tinkercad is like the younger sibling of AutoCad by AutoDesk. This  web-based application is part of the AutoDesk software family which includes Fusion360, AutoCad, TinkerCad, and more. The point here is simple: if you’re looking for fun, easy-to-use CAD program, give Tinkercad a try. It’s free to sign up and create 3D designs, circuits and code blocks. It’s a very cool, fun, and free way to learn something new for #makers.

Next, let’s discuss the cost. It may be helpful to share the components that were included in this upgrade session – TPU Update. The parts are as follows, or you can skip ahead to the upgrade process in the second post of this series. Below, we will cover the parts list, Creality upgrades, Duramic 3D Filament and Wyze Cameras, for live video action.

Upgrade Shopping List – Electronics, Parts and Accessories
Sprite Extruder

Sprite Extruder

Motherboard v4.2.7

Motherboard v4.2.7 (Required)

Bed Upgrade PEI

Bed Upgrade PEI

Digital Spool Rack

Digital Spool Rack

Wifi Box 2.0

Wifi Box 2.0

Creality TPU Filament

Creality TPU Filament

Duramic 3d TPU

Duramic 3d TPU Filament

Wyze Cam Pan

Wyze Cam Pan

Wyze Cam v3

Wyze Cam v3

Refurbed Max Neo

Refurbed Max Neo

Part 5

Part 5 – Rebuild And Upgrade

Sonic Pad Adjustments, Assembly

Part 5 Inputs/Outputs

Labwork – Upgrade Part 5

Finally, a moment to enjoy and success is here. Everyone has been eagerly anticipating a full print test of the Ender 3 Max Neo, Sonic Pad, and Creality TPU. The full print was successful without the need for a dreaded motherboard upgrade. 

No motherboard upgrade is needed at this time! We just need more time to print and tweak, print and tweak. Success! A fresh print, an end-to-end cube test print… just look at the ironing, ‘it’s alive, it’s alive’. It may seem like a small win, but it is a win nonetheless. The config/console appears to be correct, which is no surprise, I’m looking into a few more tweaks in the end.

Upgrade Continues

Let’s highlight a few things. An update was overdue, especially this one celebrating the print test win. Check. After a very early start this morning (the pictures are included below) we’ve got the Ender 3 Max Neo producing TPU test prints with minimal blips, blurbs, zits, stringing etc. All good things.

The key takeaway,  is that delta refers to extrusion setting, which controls the direct drive pressure on the filament. s… These settings can be found in the advanced settings under extrusion settings. A reminder for those using the Creality Sonic Pad interface: if you are using the onboard interface, you will need to look for something called  “steps” or a way to control the stepper. In layman’s terms, this refers to the ‘pressure in steps’ needed to  push filament through the extruder.

In Part 5, we highlights the success of the extrusion win, along with making other minor tweaks such as adjusting the heat at the tip, improving bed adhesion, and adjusting speed to match the Sprite Extrusion settings. We found that print temps between 220-240 C, depending on the filament type – Duramic or Creality TPU. Additionally, we increased the flow rate by an additional 25%, bringing it to 125%, and reduced the speed by 25% approximately 75%. Therefore, the settings are as follows: 220C – 240C Nozzle – 75C Bed – 75% Speed – 125% Flow Rate – Sprite Extrusion Settings Enabled.

Currently, some additional adjustments are being made to the movement settings in Part 5. The Z height appears to require some minor adjustments in specific areas, although the reason for this is unclear. It could be related to the differences between the initial layers and the subsequent layers. 3D printers enable users to control various settings throughout three stages of the printing process: the beginning, middle and end.

3D Printer Upgrade Inspiration
Evening Print

Evening Print

Halot Reflection

Halot Reflection

Sonic Pad

Sonic Pad

Adjustments

Adjustments

Spider Hot End

Spider Hot End

First Globule

First Globule

Test Cube

Test Cube

Failed Test Print

Failed Test Cube

One other thing to mention, which I failed to include in my previous post, Part 4 is that bed adhesion continues to be an issue. It could be the dark horse  among the issues at play.  A quick fix for bed adhesion is using alcohol and paper towels to keep the adhesion plate clear and clean! Make sure to throughly clean the plate by scrubbing away any oil residue, filament, blips, dust, stringing, dog hair (thanks, Zeus), and any other debris that might accumulate on the build plate in a typical office environment.

I don’t recall if keeping the plate clean actually made a difference when it comes to cleaning the bed, but we have tried a few different methods. We experimented with a clean bed, a taped bed (using Blue Painters Taps), and a sprayed/glue stick adhesive bed. All in an effort to find an alternative solution for prints shifting on the bed surface.  We will also be posting some build plate test and will be trying spray adhesives next. Could that be the answer?

More Adjustments

A few adjustments with the Hex (Allen) keys, resetting the rail wheels, and we’ve successfully completed Part 5. Looking back, I’m not sure if the build plate really needed to be cleaned between PLA prints. If you look closely a the picture, you’ll see that the Creality Sonic Pad is now operational as planned. Personally, I don’t think I would have kept the generic screen that originally came with the machine. The Wifi, Cloud Printing/Slicing, direct printing, and customizable settings are all key reasons to stick with the Sonic Pad.

One item to note, is that we have not been able to get the Wifi Box 2.0 to work in the upgraded sandbox. Furthermore, for the time being, we will set aside the Wifi Box 2.0 until we can determine the optimal print settings and ensure consistent adhesion. Despite this, we are staying positive and moving forward with larger format prints, including  some TinkerCad projects for a true test. Additionally, it is worth mentioning that we have relocated the printer from the workbench. The tabletop did not provide the necessary stability due to the incessant shaking, vibration, and back-and-forth motions of the printer assembly.

Overall, today is a win after having the printer on the bench for the past few weeks. Check out the previous series articles – Part 1 Teardown,  Part 2, Part 3 and Part 4. We are on an upswing, with new parts, new break-fix settings, slicing settings and a new location for the 3D printer to operate. For those interested in what’s coming next, I have a backlog of TPU Max Neo parts, including a new digital spool, some technology ‘smartphone covers’, and a unique locking mechanism for a cooler. More details on that later.