Creality Ender 3 Neo Max, NEO a series of 3d Printer by Creality. Creality, known for it’s affordable 3d Printers for hobbyist & pros.

TPU Post Processing

Testing, Slicer Settings, Heat and Bed Adhesion

TPU Action – Post Processing

Sprite Printing, TPU Post Processing Action

Max Neo Upgrades: Post Process Part of the TPU Action Series

Now, let’s discuss the ‘post process’ or TPU Post Processing after completing the physical upgrade of the Max Neo 3D Printer.

Moving on to the exciting part, we will delve into the settings, the testing process post-upgrade, and the outcomes of our efforts. As a sneak peek, we will explore the new ‘refurbed Max Neo’ (second machine), including its unboxing, post-setup testing, and transition to PETG filament for creating ‘usable’ or functional parts. All of this and more will be covered in our next article. So, we have addressed the reason behind the upgrade, which is primarily to enhance quality. Improving the quality issues has been and continues to be the main motivation for this upgrade. Additionally, the parts we have acquired for the upgrades aim to increase our success rate when using TPU filaments. Now, let’s get into the testing process.

Downloads: Firmware, Slicers, Web Apps and more:

Creality Links Suggestions (links removed if blocked, do a search for the following in that cause)
Creality Wiki
Ender 3 Max Neo: Product Firmware and Slicer
Sprite Pro Extruder: Sprite Extruder Pro
Creality Motherboard: Motherboard Firmware v4.2.7
Ecosystem – Sonic Pad: Creality Sonic Pad

Make Your Own Printables –
Creality Cloud (newer printers): Cloud 3d Printer Management
Tinkercad

Settings, Printables: Pre-made Royalty/Royalty-Free –
All3dp Slicer Settings: All 3DP Settings
All3dp Support: All 3DP Support Settings
printables.com/model
Thingiverse
Cults3d

Let’s Test, Power On The Machine and Go

Earlier we discussed the hardware upgrades and software required for the motherboard. Now, the real test begins… (drum roll please). Sharing the 40,000 foot view, we can cover slicer settings, quality improvements and how the machine is running TPU today. Ultimately, we will cover the TPU Post Processing steps at a higher level here, while providing detailed specifics in a stand alone feature article. Perhaps, we will cover each setting and how it affects print quality overall. So, we have completed the teardown, upgrade, and rebuild activities. Ready the machine, perform pre-launch checks, ensure all connections are properly seated, motor connectors and belts are connected and plug it in. Toggle the power switch ‘on’ and start making stuff. TPU Post Processing is a go!

Starting with PLA first, after upgrades, the out-of-the-box settings are fairly accurate. A generous e-step setting (e-step refers to the distance the direct drive will push the material into the extruder heating element is recommended. Lesson one learned: a tight fit, or concise grouping of slicer, motherboard/motherboard software and direct drive extruder can improve the quality of TPU prints.

Creality Ecosystem and TPU Processing

Keep in mind, the ‘ecosystem’ described above, works to apply the correct pressure, volume of materials, heat and adhesion for TPU filament as it passes through the direct drive extruder. Continuing on, each subsequent print and setting tweak can improve the target goals forming a quality print. Beare in mind, we are looking for improvement round-over-round of testing, inching us closer to a seamless print. PLA is fairly easy to work with and can run OOB (out-of-box) with OOB settings. Despite mismatched hardware flaws from previous builds, this new hardware runs the latest firmware logics, producing orderly prints. Additionally, with each print, make sure the printer has been leveled, aligned and bed plate cleaned. The goal is high quality TPU prints, creating that ‘happy path’.

Logically speaking, when moving through baseline testing, it is important to reduce flaws and misprints. In our case, this involves establishing a new baseline measurement of quality. The baseline serves as a guide for what to expect when using an out-of-the-box (OOTB) solution for PLA manufacturing or hobby printing. The goal is to eliminate flaws, blips and globs that can occur during the printing process. This article assumes that the machine purchased is shipped with necessary parts and that these parts are properly installed either installed either by the retailer or supply house.

Take a breather, you deserve it. it’s a nice feeling to complete the build. The easy part, for all intense and purposes is now over.

Build On Upgrade Successes

Generally speaking, machines come with a MicroSD card with some preinstalled printables, in our case Boaty and Bunny. These test prints will help test pre-sliced builds, slicer tests (more calibration tests) such as adhesion, temperature, flowrate, etc. The timeframe for testing effort covers more than 2 weeks (time-lapsed, of course) of work. In between coding and other work, that ‘happy path’ quickly moved us from basic PLA calibration and testing to minimal adhesion issues. PLA blips were corrected with filament flow changes, an increase in temperature at the extruder tip and reduction of heat at the bed. Note, turn fans off. Fans or cooling filament, TPU and PETG require high temps for optimal extrusion and bed adhesion. Bed plate temps vary depending on filament type, but note that cooling the filament is out of scope. It’s more of a hassle and does more harm than good.

If I haven’t explicitly state this in my previous articles, simply removing the fans or programmatically turning them off at the slicer helps maintain higher quality prints day over day. During the Bowden to Direct Drive conversion, the fans were removed for the formal TPU run. They were also nerf’ed for this build, as the quality print quality over consecutive prints is not sufficient for an ideal manufacturing process with 10 or more prints. A better solution to note here, reduce fan power (or turn them off) as TPU and PETG are finicky filaments.

Reduced Filament Heat, Not Good For Business

Simply reducing heat is not enough, the cooling process can actually lead to poor bed adhesion issues, which we will address. However, our main focus is on eliminating any shipping or physical/hardware issues that may arise during the startup process and initial PLA prints. When it comes to PLA testing, we need to answer the following questions: Did we install the parts correctly? Does the filament passthrough the extruder smoothly? Are any anomalies in the prints due to hardware or software issues or are they the new norm? In simple terms, does the machine and all it’s parts function as expected? The answer should be yes! Below, we have outlined the steps to ensure everything is working properly. Additional text and images will be included to provide further clarification for those who need visual aids, so stay tuned!

Post Upgrades, PLA Settings and Prints
At Rest

At Rest

First Print

First Print

Cylinder Test

Cylinder Test

Smartphone Case Test

Case Test

Camera (Webcam)

Camera (Webcam)

Second Print

TPU Print

Second View

TPU Print Second View

Clean Up

Clean Up

Adhesive Problems and Clean up

Adhesion Problems

Filament Weight

Filament Weight

Midnight Run

Midnight Run

Sonic Smart Pad Crash

Smart Pad Crash

Sticking with moderate sized prints for larger sizes, the Max Neo is the largest bed plate available, quality, clean up effort and repeatability are all key factors in successful 3D printing. As they say, all’s well that ends well. Initially, PLA filaments ran smoothly, but bed adhesion issues arose when transitioning to TPU filaments, becoming a sore spot. It seems that all good things must come to an end (but we carry on). Work is ongoing, with bed adhesion remaining a concern. Test are ongoing as we search for the optimal TPU printing environment including machine settings, bed adhesion plates, temperatures, printing speed, e-steps, etc.

What has helped here is assuming users are using quality TPU filaments and a quality bed plate (textured or smooth) glass. Simple school glues, spray adhesives, and/or painter’s tape can quickly correct adhesion issues. Later on, we switched to using the Creality PEI bed plate and school glue for TPU and PETG prints, eliminating the need additional adhesives and their associated costs. Below, you will find a few of our successful prints, as well as some disasters, including late-night smartphone case print cycles and the decision to incorporate the new PEI bed surface.

Bed Adhesion, Sonic Pad Swap, TPU Settings Rollout
Duramic Run

Duramic Run

Skewed Results

Skewed Results

Stop The Press

Stop The Press

TPU Run

TPU Run

Prep Surface

Prep Surface

Peel PEI Surface

Peel PEI Surface

Bed Film Placed

Bed Film Placed

Bed Ready

Bed Ready

Adhesion crisis  averted, we can now delve into the new Creality V4.6 Slicer. Download it now if you can or choose to do so. The slicer comes packed full of new mix settings and reliable ‘custom’ settings that we use during the transition from PLA to TPU. Custom filament tweaks on the slicer get the job done. These settings serve as the gate approval system, easily covering baseline testing and PLA-to-TPU mashups. It’s important to note that the  slicer is crucial, along with the other hardware and software elements included in this build. 

Ultimately, upon reflection, I believe this is where the success of this build truly shines. The success of TPU Post Processing depends on the slicer, its customization and support settings. Moving forward, despite previous builds having only moderate success, the new Slicer is excellent and quite serviceable. I must mention the failures of the Sonic Pad here – we have decided to forgo the Sonic Pad for now and instead opt for the Wifi 2.0 boxes or manual printing using the Max Neo MicroSD and LCD interfaces at the machine. Honestly, it’s the build ecosystem the firmware, slicer, motherboard, and Sprite Pro extruder that has allowed us to achieve a level of quality that we were unable to attain in the previous builds. More on this will be discussed in another article.

Accessories, Bed Adhesion and Latest Settings

Moving on from the slicer settings and Sonic Pad issues, I decided to use the Wifi Box 2.0, with latest firmware to improve creature comfort while printing. This allows me to print from a seated position at my desk eliminating the need to constantly go back and forth between my desk and the printer for tasks like creation, slicing, MicroSD management, and selecting print. Additionally, I added a camera to work as a webcam, enabling me to print untethered or engage in hobby-level production. This upgrade can be likened to a ‘power up’ in Super Mario Bros. providing enhanced functionality. The upgraded webcam allows for seamless printing from the slicer to the printer using the Wifi Box.

We will address the challenges of using a Wyze webcam in a separate article. This article will provide a step-by-step guide for converting your camera. We will also include videos and the best guides to follow when converting your Wyze camera to a webcam. In conclusion, Wyze offers an affordable alternative  to other webcams on the market. By using a simple fix, developer-built code, and easy button combinations, you can easily convert your Wyze camera into a webcam. Now, let’s move on to TPU prints. 

Various TPU Filaments, Smartphone Case Tests, Clean Up
Grey Duramic

Grey Duramic

Grey Case

Grey Case

Parts At Once

Parts At Once

Creality TPU

Creality TPU

TPU Objects - All at once

TPU Objects

TPU Container

TPU Container

Tertiary Case

Tertiary Case

TPU Cleanup

TPU Cleanup

Legacy Case

Legacy Case

Legacy Case 2

Legacy Case

Cleaned Up

Cleaned Up

TPU Comparison

TPU Comparison

Production Variation

Thirdly, let’s discuss adhesion. As as we progress through TPU testing or post processing, PLA and TPU prints have ‘adhesion issues such as peeling or damage that appears to be caused by severe temperature changes. This is a good opportunity to address adhesion settings. Balancing bed temp and extrusion temperature is an ongoing testing process that you will become very familiar with when working with 3D print production. Think of it as a blend of art and science when working with 3D printers, printables and open source or custom designs.

Overall, if you don’t pay attention to adhesion and temperatures, things can quickly become difficult, especially with production variations using TPU filaments and even more so with PETG filaments. It’s important to maintain control, and a small amount of adhesive can make a big difference. With the upgraded motherboard, extruder, PEI build plate, and proper adhesion using school glue, you can have better control. Pay attention to settings, especially when it comes to support (use a generous amount for support at the plate) and bed plate adhesion like using the raft selection.

Temperature Improvements and Optimal Settings

Ideal or optimal slicer settings work to complement a brim/auto brim or raft adhesion type. With the addition of what has been tested to be the best bed adhesion type… temps at 250 degrees, bed at 0 degrees, (fan at 0) and speed at 50%. Three products were tested: heavy strength spray adhesive, painters tape and simple school glue. Testing suggestions, again, not required, but more as a release agent. Now, the opposite can be said for PETG, which we will cover in another article. Those settings are still being worked out. As you can imagine, working through the TPU settings took about ~2 weeks of effort, PETG has a much longer testing effort.

Today, we have gathered and processed with what may be the optimal TPU Slicer settings. A new camera position, guided by fewer misprints in our testing efforts, has been implemented to reduce production flaws like blips, or globs, traveling over the print. We have managed to nail down or complete what feels like the final tweaks for TPU printables. Therefore, before we introduce PETG (which can be challenging on its own), we have minimized difficulties and ensured high quality. Before we transition away from TPU, I would like to highlight both the successes and failures in achieving quality. We are gradually transitioning from hardware/software upgrades to different filament types such as PLA, TPU, and now PETG. We are exploring factors such as heat, bed temperature, support and bed adhesion methods.

Wrap up and Conclusion

PETG filaments introduce a range of new adhesion issues, making clean up a nightmare. Additionally, while the quality of prints has improved in terms of  smoothness and clarity, all prints require some form of ‘final processing’ or deburring. To build on the success of TPU printing, we have invested in additional tools such as Klein Tools Flush Cutters and AFA Deburring Tool Set. These purchases aim to enhance post-print output, with the goal of significantly improving final production or shippable pieces with typical manufacturing process (design, construction, production, shipping).

Finally, at the end here, we touched on the TPU Post Processing setup. Let’s share some more images for those who enjoy visuals, think of it as a snapshot of ‘where we are today’… one click printing, high quality prints, replicable from PLA to PETG, camera, and wifi box 2.0. Let’s cover the initial PLA testing, the TPU filament torture test (array), and final print slicer/WiFi Box settings on the next episode of TPU Action!

Slicer Tweaks, Latest Prints
Web Cam

Web Cam

Test Builds

Test Builds

New TPU Filament

New TPU Filament

Matching Tool Station

Matching Tool Station

Purchase a WiFi 2.0 Box

WiFi 2.0 Box

Dual WiFi Boxes running multiple machines

Matching WiFi Box

TPU Full Setup

Full Setup

Revisit previous posts in this series which cover the new filament spool upgrade, upgradable parts such as  hardware, accessories, filament and current pricing. All of these items can be found on the Shopping List. Alternatively, you can read about the upgrade process and the successes achieved along the way.

TPU Upgrade Action

Full Install, System Inspection and Testing

TPU(Thermoplastic Polyurethane) Action – Sprite Extruder, Motherboard and Prints In Flight

TinkerCad Design - TPU Box with compartments

Max Neo Upgrades: The Parts, the pain and TPU Series

Covering TPU Action, starting with the removal, adding modifications, clean-up effort, settings for successful prints and final production.

Why Upgrade, Pieces and Parts

Let’s start with the why. Why upgrade your Max Neo board, extruder etc.? The easy answer is successful TPU prints. Prints of high quality, with low errors (blips and globs), working usable prints and again, TPU. How long did the upgrades take, i.e. duration, to upgrade the required parts for successful prints? In short, the installation took 30 – 60 minutes, with tweaks taking an additional 2 weeks. The time to achieve successful and consistent prints was 2.5 weeks. This includes time for troubleshooting, adding/removing parts, multiple test prints (which might slightly affect the duration), and finalizing print settings within the Creality Slicer.

Slicer and Pre-Print Preview
TinkerCad Design

Tinkercad Design

Slicer 4.3.8

Creality Slicer 4.3.8

Slicer Pre-Build

Slicer Pre-Build

If you have not checked out TINKERCAD yet, please do. This is where my drawings, ideas and digital designs come to life. It’s a web based application, specifically CAD (Computer Aided Design) software, used in the maker space and ideally in the global manufacturing industry. Tinkercad allows tinkers, students, and teachers to quickly learn, build and create in a simplified AutoCad environment. Tinkercad is like the younger sibling of AutoCad by AutoDesk. This  web-based application is part of the AutoDesk software family which includes Fusion360, AutoCad, TinkerCad, and more. The point here is simple: if you’re looking for fun, easy-to-use CAD program, give Tinkercad a try. It’s free to sign up and create 3D designs, circuits and code blocks. It’s a very cool, fun, and free way to learn something new for #makers.

Next, let’s discuss the cost. It may be helpful to share the components that were included in this upgrade session – TPU Update. The parts are as follows, or you can skip ahead to the upgrade process in the second post of this series. Below, we will cover the parts list, Creality upgrades, Duramic 3D Filament and Wyze Cameras, for live video action.

Upgrade Shopping List – Electronics, Parts and Accessories
Sprite Extruder

Sprite Extruder

Motherboard v4.2.7

Motherboard v4.2.7 (Required)

Bed Upgrade PEI

Bed Upgrade PEI

Digital Spool Rack

Digital Spool Rack

Wifi Box 2.0

Wifi Box 2.0

Creality TPU Filament

Creality TPU Filament

Duramic 3d TPU

Duramic 3d TPU Filament

Wyze Cam Pan

Wyze Cam Pan

Wyze Cam v3

Wyze Cam v3

Refurbed Max Neo

Refurbed Max Neo

Part 5

Part 5 – Rebuild And Upgrade

Sonic Pad Adjustments, Assembly

Part 5 Inputs/Outputs

Labwork – Upgrade Part 5

Finally, a moment to enjoy and success is here. Everyone has been eagerly anticipating a full print test of the Ender 3 Max Neo, Sonic Pad, and Creality TPU. The full print was successful without the need for a dreaded motherboard upgrade. 

No motherboard upgrade is needed at this time! We just need more time to print and tweak, print and tweak. Success! A fresh print, an end-to-end cube test print… just look at the ironing, ‘it’s alive, it’s alive’. It may seem like a small win, but it is a win nonetheless. The config/console appears to be correct, which is no surprise, I’m looking into a few more tweaks in the end.

Upgrade Continues

Let’s highlight a few things. An update was overdue, especially this one celebrating the print test win. Check. After a very early start this morning (the pictures are included below) we’ve got the Ender 3 Max Neo producing TPU test prints with minimal blips, blurbs, zits, stringing etc. All good things.

The key takeaway,  is that delta refers to extrusion setting, which controls the direct drive pressure on the filament. s… These settings can be found in the advanced settings under extrusion settings. A reminder for those using the Creality Sonic Pad interface: if you are using the onboard interface, you will need to look for something called  “steps” or a way to control the stepper. In layman’s terms, this refers to the ‘pressure in steps’ needed to  push filament through the extruder.

In Part 5, we highlights the success of the extrusion win, along with making other minor tweaks such as adjusting the heat at the tip, improving bed adhesion, and adjusting speed to match the Sprite Extrusion settings. We found that print temps between 220-240 C, depending on the filament type – Duramic or Creality TPU. Additionally, we increased the flow rate by an additional 25%, bringing it to 125%, and reduced the speed by 25% approximately 75%. Therefore, the settings are as follows: 220C – 240C Nozzle – 75C Bed – 75% Speed – 125% Flow Rate – Sprite Extrusion Settings Enabled.

Currently, some additional adjustments are being made to the movement settings in Part 5. The Z height appears to require some minor adjustments in specific areas, although the reason for this is unclear. It could be related to the differences between the initial layers and the subsequent layers. 3D printers enable users to control various settings throughout three stages of the printing process: the beginning, middle and end.

3D Printer Upgrade Inspiration
Evening Print

Evening Print

Halot Reflection

Halot Reflection

Sonic Pad

Sonic Pad

Adjustments

Adjustments

Spider Hot End

Spider Hot End

First Globule

First Globule

Test Cube

Test Cube

Failed Test Print

Failed Test Cube

One other thing to mention, which I failed to include in my previous post, Part 4 is that bed adhesion continues to be an issue. It could be the dark horse  among the issues at play.  A quick fix for bed adhesion is using alcohol and paper towels to keep the adhesion plate clear and clean! Make sure to throughly clean the plate by scrubbing away any oil residue, filament, blips, dust, stringing, dog hair (thanks, Zeus), and any other debris that might accumulate on the build plate in a typical office environment.

I don’t recall if keeping the plate clean actually made a difference when it comes to cleaning the bed, but we have tried a few different methods. We experimented with a clean bed, a taped bed (using Blue Painters Taps), and a sprayed/glue stick adhesive bed. All in an effort to find an alternative solution for prints shifting on the bed surface.  We will also be posting some build plate test and will be trying spray adhesives next. Could that be the answer?

More Adjustments

A few adjustments with the Hex (Allen) keys, resetting the rail wheels, and we’ve successfully completed Part 5. Looking back, I’m not sure if the build plate really needed to be cleaned between PLA prints. If you look closely a the picture, you’ll see that the Creality Sonic Pad is now operational as planned. Personally, I don’t think I would have kept the generic screen that originally came with the machine. The Wifi, Cloud Printing/Slicing, direct printing, and customizable settings are all key reasons to stick with the Sonic Pad.

One item to note, is that we have not been able to get the Wifi Box 2.0 to work in the upgraded sandbox. Furthermore, for the time being, we will set aside the Wifi Box 2.0 until we can determine the optimal print settings and ensure consistent adhesion. Despite this, we are staying positive and moving forward with larger format prints, including  some TinkerCad projects for a true test. Additionally, it is worth mentioning that we have relocated the printer from the workbench. The tabletop did not provide the necessary stability due to the incessant shaking, vibration, and back-and-forth motions of the printer assembly.

Overall, today is a win after having the printer on the bench for the past few weeks. Check out the previous series articles – Part 1 Teardown,  Part 2, Part 3 and Part 4. We are on an upswing, with new parts, new break-fix settings, slicing settings and a new location for the 3D printer to operate. For those interested in what’s coming next, I have a backlog of TPU Max Neo parts, including a new digital spool, some technology ‘smartphone covers’, and a unique locking mechanism for a cooler. More details on that later.

Filament Spool Update

Filament Rack, Digital Scale, and Spool

Creality Digital Spool Rack

Spool Rack

Gear – Filament Rack

Needed an additional part/piece, this Creality Spool Rack.

Today, we have a Filament Spool Update and the final accessory to add to the TPU upgrade build. Dare I call it the final piece of the puzzle for the build.

What are we looking at here? It’s a top-mounted (overhead) rack, specifically the Creality Digital Spool Rack. The rack, or filament management rack sits atop the main brace/cross-bracket framing structure as shown below (see new spool image). The spool rack will allow for multiple filament types:* PLA, ABS, Nylon, Wood, and TPU *assuming the filament comes on a spool, regardless of the size. It’s important to note that Creality includes a portion of filament or test filament with a new or refurbished printer. This information is helpful for new 3D printer users.

The advantage? TPU specifically can unwind and pass through a top cross-brace funneling mechanism directly into the new direct drive extruder. This serves as the new static filament storage area/piece. For those of you with a Bowden drive, you may not understand, but after the upgrade, we needed a way to feed filament to the direct drive extruder. This serves as the solution. 

3D Printer Accessories
New Spool

New Spool

Digi Spool

Digi Spool

Spool Rack

Spool Rack

Creality makes this handy filament rack, replacing the OEM side mounted rack. It’s perfect for filament management – size, weight over time etc. Same as the  OEM rack with a few upgrades like a bright, digital scale. The rack has a large, bright digital scale Interface, a great visual for filament volume, space and duration. 

The key here, as part of the Filament Spool Update, the digital read out (interface) built into the spool mount brings ‘site by volume’. And as you can imagine, this can help predict usage, and consumption rates. More importantly, cost per item or printable. It’s small enough to screw to the topside of the support frame. The interface is bright enough to work in the dark, cast enough light onto the printer bed. Note, all filament types in spool formant should work on the rack, TPU, ABS, Nylon, Wood and/or PLA. All material come into scope once the direct drive is up and functioning as expected.

Ender Upgrade Adhesion Issue

Adhesion Issues, Bed Temp

Latest Ender Chaos

Ender Issue 26

Lab Work – Humor Is The Only Way Sometimes

The Lead, 6 hour+ print chaos; let’s address and tackle these Ender Upgrade Adhesion Issues. We will put the Halot Sky Resin vat cover issue, on hold and focus on the Ender 3 Neo Max bed adhesion problems. It has taken over 5 hours to troubleshoot, with fans running and a cooling bed plate. There are numerous issues to tackle!

Let’s Troubleshoot
Extruder Pressed Down

Extruder Pressed Down

Bed Inspection

Bed Inspection

Extruder Removed

Extruder Removed

Sensor Globule

Sensor Globule

blank

Heating Element

blank

Close Up

Track Bands Off

Track Bands Off

Missing Tension Knobs

Missing Tension Knobs

Extruder Into Plate

Extruder Pushing Plate

Current Status, Visual Check

Secondly, we are missing hand-tension screws and tension belts. There is a literal mess of PLA covering 60% or more of the printer, extrusion head, bed and assembly. Fortunately, I walked in post-print as a tension belt was in the process of removing itself from the printer head.

That concludes the visual inspection portion of the Ender Upgrade Adhesion Issue. Moving forward, we have the printer head back together, PLA cleaned off, tension belts applied. Next and not captured below, replace adhesion plate, tension screws, and restart the machine for calibration. Look for update posts here in the next day or two.

What is the purpose of the print? I wanted to put a cover on the Halot Sky (V1) Resin vat, but I am not sure where the original cover might have gone – it could have been misplaced, broken, scrapped or lost. More importantly, the print itself was lost. From the perspective of the ‘pressman’, the printable seems to have failed to adhere to the build plate. After checking the settings, it was discovered that the ironing was off, and the printer head was buried into the print plate. This is not good for the printer or its parts. Additionally, there was a concerning sound of tension belts releasing and printer head/plate friction. However, the print fix is currently being fixed, and we will provide an update at a later date or time.

Finally, we replace build plate, hand screws, springs, restart/update firmware and calibration.

Ender 3 Max Neo Filament

Printer Base Stabilization, Adhesion and Print Heights

Ender 3 Max Neo Filament Solutions

Filament Everywhere

Lab Work – TPU Speed and Cycle Times

For this article on the Ender 3 Max Neo Filament, a typical print cycle might run between 2-5 hours, possibly more. While the standard range has been 2-5 hours, we are now looking at 12 – 16 hours. Recently, we have extended the top maximum run times to just under 12 hours for our test models. Surprisingly, both print tests resulted in the a mess.

For the record, a paper towel holder caused this issue twice. Upon initial observation, as the prints moved vertically (up the y-axis), the printing quality deteriorated. Somewhere between the 4″ and 5″ mark, both test prints went awry. 

I’m starting to think there is shaking issue with the table or even a stabilization issue where the printer. is located. Both issues might be addressed by printing the base slices, holder ends, screws, rods, and washers in a single print. These items should be printed separately to attach the towel roll and the rod. The rod that is slung between the holders can be printed in a secondary or tertiary step, This is mitigation issue number one, or we could address the stabilization directly. The printers are currently positioned where they stand, so there is not much I can do to move them around.

Once I received the new filament, we will print the rod. If it works, great. If not, then step two will be more tedious. The issue is mostly a space problem in the office. The filament should arrive later today, and I will post a quick summary once I finish printing the rod slice, assuming it is successful.

Ironically, a similar issue was occurring when I ran TPU through the machine. So we can conclude the Ender 3 Max Neo Filament post with this. Although I don’t think they are related, adhesion was the issue with TPU. Which we will address in a future post once we determine the correct nozzle temps, print speed, and adhesion setup. I have heard/read about using adhesion spray or glue stick. Another day, we will tackle those 3d printer issues/phantom printing phenomenon.